
Eur. Phys. J. C 1, 177–190 (1998) THE EUROPEAN
PHYSICAL JOURNAL C
c© Springer-Verlag 1998

Anomalous three gauge boson couplings in e+e− → W+W−

and “optimal” strategies for their measurement

M. Diehl1,a, O. Nachtmann2

1 Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, Great Britain
(e-mail: diehl@pth.polytechnique.fr)

2 Institut für Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg, Germany
(e-mail: O.Nachtmann@thphys.uni-heidelberg.de)

Received: 31 January 1997 / Revised version: 14 April 1997

Abstract. We discuss how to measure anomalous WWZ- and WWγ-couplings with minimal statistical
error using integrated observables, without having to assume that the anomalous couplings are small. We
propose a parametrisation of these couplings which is well suited for the extraction of both single and many
parameters, and which leads to a very simple form of the integrated cross section, from which additional
information on the couplings can be obtained.

1 Introduction

The direct and precise measurement of the self-coupling
between the electroweak gauge bosons in W -pair produc-
tion will be a crucial step in testing the standard model
of electroweak interactions and searching for physics be-
yond it. It will form an important part of the physics pro-
gramme at LEP2 and at a planned linear e+e−-collider
(LC). As is well known there are three diagrams at tree
level that contribute to the amplitude of e+e− →W+W−
in the standard model, one with t-channel neutrino ex-
change and the other two with a γ or Z in the s-channel,
involving the vertices WWγ and WWZ. One can para-
metrise the corresponding vertex functions in order to
quantify the couplings and to compare them with their
form in the standard model. Requiring Lorentz covariance
each vertex is described by seven complex form factors [1],
three of which give couplings that violate CP symmetry.
This parametrisation neglects the scalar components of
the vector bosons, which do not contribute in scattering
amplitudes where the bosons are on shell or couple to
massless fermions.

Without further physical assumptions one is thus left
with 28 real parameters whose simultaneous extraction in
one experiment looks quite hopeless. Given the limited
event statistics expected at both LEP2 and the LC one
will only obtain meaningful errors on a reduced number
of coupling parameters at one time. This may be achieved
by imposing certain constraints on the full set of coupling
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constants; various suggestions for such constraints based
on symmetry considerations have been made in the lit-
erature [2,3]. One must however keep in mind that ex-
perimental values or bounds on couplings that have been
obtained with particular constraints cannot be converted
into results without constraints or with different ones; the
information lost by assuming relations between couplings
cannot be retrieved. Although imposing such constraints
is certainly legitimate and can be useful we stress that a
data analysis with independent couplings will be valuable,
both to decrease model dependence and to allow compar-
ison of results from different experiments.

We remark that of course one can also give (reason-
ably small) errors on single or few couplings in a multi-
parameter analysis. In this paper we propose a parametri-
sation of the couplings which is well adapted to this end,
the statistical errors on the different measured parameters
being approximately uncorrelated.

We will work in the framework of optimal observables,
a way to extract unknown coupling parameters introduced
for the case of one parameter in [4,5] that has since been
used for various reactions [6–8]. General aspects of this
method, in particular its extension to an arbitrary num-
ber of parameters, as well as its application to W+W−
production were discussed in [9]. In this paper we investi-
gate again the reaction e+e− →W+W−. We concentrate
here on the decay channels, where one W decays hadron-
ically and the other into an electron or muon and its neu-
trino. Calculated with the Born level cross section of the
standard model the statistics of these channels is about
3000 events for a collision energy of

√
s = 190 GeV and

500 pb−1 integrated luminosity, which are typical planned
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LEP2 parameters, and about 22000 events with 10 fb−1

at
√
s = 500 GeV, which might be achieved at the LC.

A complementary source of information is the inte-
grated cross section, which is a quadratic function of the
triple gauge couplings. The combination of information
from the total event rate and from observables that make
use of the detailed distribution in the final state has for ex-
ample been used in [10], where CP violation in the decay
Z → bb̄g was investigated.

In Sect. 2 of this paper we will further develop some
aspects of the method of optimal observables, in particu-
lar we will discuss what can and what cannot be achieved
with this method in the general case, i.e. without the lin-
ear approximation in the coupling parameters that was
used in [9]. In Sect. 3 we then propose a parametrisation
of the couplings that simultaneously diagonalises certain
matrices connected with our observables and with the inte-
grated cross section. These parameters achieve two goals:
their quadratic contribution to the total cross section is
a simple sum of squares and the covariance matrix of the
corresponding optimal observables is diagonal. The meth-
ods which we use for this purpose are borrowed from the
theory of small oscillations of a system with f degrees
of freedom (cf. e.g. [11]). Our parameters correspond to
“normal coordinates” and their use in an experimental
analysis should in our view present several advantages.
We give some numerical examples for W -pair production
at LEP2 and the LC in Sect. 4 and make some further
remarks on how our proposal might be implemented in
practice in Sect. 5. The last section of this paper gives a
summary of our main points.

2 Optimal observables:
analysis beyond leading order

The method of optimal observables has previously been
presented in the approximation that the couplings to be
extracted are sufficiently small to allow for a leading order
Taylor expansion of various expressions. Here we show how
to use it beyond this approximation.

Let us denote by gi the real and imaginary parts of
the WWγ and WWZ form factors minus their values in
the standard model at tree level. As the amplitude of our
process is linear in these couplings we can write the dif-
ferential cross section as

dσ

dφ
= S0(φ) +

∑
i

S1,i(φ) gi +
∑
ij

S2,ij(φ) gigj , (1)

where S2,ij(φ) is a positive semidefinite symmetric matrix
and φ collectively denotes the set of measured phase space
variables. We assume here that nonstandard effects in our
reaction can be described in terms of the above WWγ
and WWZ couplings, so that S0, S1,i and S2,ij are known
functions of φ. A general discussion of W+W− produc-
tion in e+e− collisions has been given in [12], and in four
fermion production there can yet be other effects beyond
the standard model.

The integrated cross section is

σ = σ0

1 +
∑
i

σ̂1,i gi +
∑
ij

σ̂2,ij gigj

 (2)

with the standard model cross section σ0 =
∫
dφS0(φ)

and coefficients

σ̂1,i =
1
σ0

∫
dφS1,i(φ) , σ̂2,ij =

1
σ0

∫
dφS2,ij(φ) . (3)

The idea of using integrated observables is to define suit-
able functions Oi(φ) of the phase space variables and to
extract the unknown couplings from their measured mean
values Oi. Let us give the details. From (1) and (2) we
obtain the expectation value E[Oi] of Oi as

E[Oi]− E0[Oi] =

∑
j

cij gj +
∑
jk

qijk gjgk

1 +
∑
j

σ̂1,j gj +
∑
jk

σ̂2,jk gjgk
(4)

with the standard model expectation value E0[Oi] =
(
∫
dφOiS0)/σ0 and coefficients

cij =
1
σ0

∫
dφOiS1,j − E0[Oi] σ̂1,j ,

qijk =
1
σ0

∫
dφOiS2,jk − E0[Oi] σ̂2,jk . (5)

We remark in passing that the coefficients in (4) can be
written in a compact form as

cij = V0[Oi , S1,j/S0] , qijk = V0[Oi , S2,jk/S0] ,

σ̂1,j = E0[S1,j/S0] , σ̂2,jk = E0[S2,jk/S0] , (6)

where V0[f, g] = E0[fg] − E0[f ]E0[g] is the covariance of
f(φ) and g(φ) in the standard model. Note that σ̂2,jk is
symmetric and positive definite, whereas qijk as a matrix
in j and k is symmetric but in general indefinite.

An estimation of the couplings can now be obtained by
solving the system (4) with E[Oi] replaced by the mean
values Oi,

Oi − E0[Oi] =

∑
j

cij gj +
∑
jk

qijk gjgk

1 +
∑
j

σ̂1,j gj +
∑
jk

σ̂2,jk gjgk
, (7)

provided of course one has n observables for n unknown
couplings. When the system (7) is linearised in the gi it is
easily solved by inversion of the matrix cij . One is however
not constrained to do so and can instead solve the exact
set of equations (7). By multiplication with the denomi-
nator it can be rearranged to a coupled set of quadratic
equations in the gi and will in general have several solu-
tions. Some of these may be complex and thus ruled out,
but from the information of the Oi alone one cannot tell
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which of the remaining real ones is the physical solution.
We will come back to this point.

The measured mean values Oi are of course only equal
to the E[Oi] up to systematic and statistical errors. We
only consider the latter here, which are given by the co-
variance matrix V (O)ij of the observables Oi divided by
the number N of events in the analysis. To convert the
errors on the observables into errors on the extracted cou-
plings we use the quantity

χ2(g) =
∑
ij

(
Oi − E[Oi]

)
NV (O)−1

ij

(
Oj − E[Oj ]

)
,

(8)
which depends on the gi through the E[Oi] given in (4).
Solving (7) is tantamount to minimising χ2 with χ2

min = 0,
and a confidence region on the couplings is as usual given
by

χ2(g)− χ2
min ≤ const. (9)

with the constant determined by the desired confidence
level. In the case of several unknown couplings it might
actually be easier to extract the gi by solving the equation
χ2(g) = 0 using a minimisation procedure, rather than
solving the coupled system (7).

There are several possible choices for the covariance
matrix V (O) in (8). It can be
1. determined from the measured distribution of the ob-

servables Oi,
2. calculated from the differential cross section (1), taking

for the gi the values extracted in the measurement,
3. calculated for vanishing couplings gi.
Choices 1. and 2. should lead to the same results in the
limit of large N where the statistical errors on the mea-
sured V (O)ij and gi become small. Choice 3. in turn will
be a good approximation of 2. if the couplings are small
enough. If one extracts the couplings by minimising χ2(g)
one can of course not use choice 2.

Comparison of the covariance matrices obtained by
methods 1. and 2. might be helpful to rule out unphys-
ical solutions of (7). The information from the integrated
cross section, which we will discuss in Sect. 3.1, can also
be used to this effect. Some solutions, however, cannot be
eliminated in this way: in [13] it was shown that there are
points in the space of couplings which give nearly identi-
cal differential cross sections for our process so that unless
the statistics are sufficiently large no extraction method
can determine which of them is the physical solution. The
unphysical values of couplings that were extracted in [2,
13] from events generated with all gi set to zero are indeed
obtained as additional solutions of (7) in our method [14].

In [9] we considered an analysis at leading order in the
gi, where one uses the linearised form of (7) to estimate
the couplings:

ĝj =
∑
k

c−1
jk

(
Ok − E0[Ok]

)
. (10)

Correspondingly the linear approximation of (4) is used
in the expression (8) of χ2 which then reads

χ2(g) =
∑
ij

(ĝi − gi)V (g)−1
ij (ĝj − gj) , (11)

where
V (g)−1 = N cT · V (O)−1 · c (12)

is the inverse covariance matrix of the estimated couplings
[9]. As one works to leading order in the gi one can ap-
proximate V (O) by its value for zero couplings, i.e. choose
possibility 3. above.

The confidence regions χ2(g) ≤ const. for the mea-
sured couplings are then ellipsoids in the space of the gi
with centre at (ĝi). The optimal observables

Oi(φ) =
S1,i(φ)
S0(φ)

(13)

discussed in [9] have the property that to leading order the
statistical errors on the estimated couplings are the small-
est possible ones that can be obtained with any method,
including e.g. a maximum likelihood fit to the normalised
distribution of φ obtained from the differential cross sec-
tion (1).

Note that one can still use the linearised expressions
(10) and (11) in an analysis beyond leading order. The er-
ror χ2(g) ≤ 1 on the couplings will be given by an ellipsoid
with defining matrix (12), where V (O) is the covariance
matrix at the actual values of the couplings. These errors
will in general no longer be optimal, so that when the
leading order approximation is not good one might ob-
tain better errors with a different choice of observables.
More importantly, however, the extracted values of the
couplings are biased: averaged over a large number of ex-
periments the measured couplings differ from the actual
ones by terms quadratic in the gi.

If instead one uses the full expressions (4), (7) and
(8) one has no bias on the extracted coupling parameters,
provided the number N of events in the analysis is large
enough. Let us see if we can find optimal observables for
this case. To this end we expand the differential cross sec-
tion around some values g̃i of the couplings:

dσ

dφ
= S̃0 +

∑
i

S̃1,i(φ) · (gi − g̃i)

+
∑
ij

S̃2,ij(φ) · (gi − g̃i)(gj − g̃j) . (14)

The corresponding zeroth order cross sections and mean
values are σ̃0 =

∫
dφ S̃0 and Ẽ0[Oi] = (

∫
dφOiS̃0)/σ̃0, re-

spectively. We then can re-express E[Oi] in (4), replacing
gi with gi − g̃i, E0 with Ẽ0, and using new coefficients c̃ij
etc. constructed as in (3), (5). Making the same replace-
ments in (7) we have an alternative set of equations to
extract the coupling parameters.

It can be shown that for sufficiently large N the confi-
dence regions obtained from (8), (9) in a nonlinear analysis
are again ellipsoids given by χ2(g) ≤ const. One can then
write χ2(g) as in (11), but with V (g)−1 of (12) replaced
by

V (g)−1 = N c̃ T · V (O)−1 · c̃ , (15)

where c̃ corresponds to an expansion (14) of dσ/dφ about
the actual values of the couplings. The main point of the
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argument is that for large N the statistical errors on the
Oi become small, so that the extracted couplings will be
sufficiently close to the actual ones to allow for a lineari-
sation of (4) and (7), cf. [15–17].

Finally one can construct new observables

Õi(φ) =
S̃1,i(φ)

S̃0(φ)
(16)

from (14). They will be optimal, i.e. have minimum sta-
tistical error if the g̃i are equal to the actual values of the
gi. In appendix A we show that, up to linear reparametri-
sations given in (39), this is the only set of n integrated
observables that measures the n couplings with minimum
error. There is hence no choice of observables that would
be optimal for all values of the actual coupling parameters.
As these are unknown one can in practice not write down
the truly “optimal” observables, but our argument tells us
how one can improve on the choice in (13) if one has some
previous estimates g̃i of the couplings (cf. also [5]). One
may then choose to perform a leading order analysis as de-
scribed above, linearising about gi = g̃i instead of gi = 0.
A practical way to proceed could be to estimate the pa-
rameters gi at first using the linearised method around
gi = 0. Suppose this gives as best estimate some values ĝi.
Then in a second step one could set g̃i = ĝi and use the
linearised method around g̃i to improve the estimate etc.

At this point we wish to comment on the “optimal
technique” for determining unknown parameters in the
differential cross section that has been proposed in [18].
The “weighting functions” wi(φ) there depend on the ac-
tual values of the parameters one wants to extract and
are thus not “observables”. Only if one sets the unknown
parameters in the wi(φ) equal to some previous estimates
of them can one use these functions to weight individual
events; the better these estimates are the more sensitive
the functions will be. If one does this then the set wi(φ)
is equivalent to our observables (16) defined for some es-
timates g̃i of the coupling parameters.

We finally remark that if N is not large enough the
statistical errors on the mean values Oi and thus on the
measured couplings might be so large that they lead into
a region where a linearisation of (4) is not a good approx-
imation. The covariance matrix V (g) is then no longer
given by (15). Moreover the errors on the couplings might
be asymmetric and the shape of the confidence region de-
fined by (8), (9) very different from an ellipsoid, so that
knowledge of V (g) is not sufficient to estimate the errors
on the gi. In such a case we cannot say on general grounds
how sensitive our observables are. Incidentally this also
holds for other extraction methods such as maximum like-
lihood fits, whose optimal properties are realised in the
limit N →∞. If one is rather far from this limit the sen-
sitivity of a method will have to be determined by other
means, e.g. by detailed Monte Carlo simulations.

The method we have outlined can of course also be
applied if one chooses to reduce the number of unknown
parameters by imposing certain linear constraints on the
couplings. One may still use the observables (13) corre-
sponding to the full set of couplings but minimise χ2 in (8)

for the reduced set; in this case one can of course not take
choice 2. for V (O). In general χ2

min is then different from
zero and its value indicates to which extent the particular
constraints on the couplings are compatible with the data.
If N is large enough χ2

min follows in fact a χ2-distribution
with n − m degrees of freedom for n observables and m
independent couplings so that its value can be converted
into a confidence level [15].

We conclude with a remark on the use of optimal ob-
servables in practice. A realistic data analysis will not be
good enough if the Born approximation of the differential
cross section (1) is used. Both higher-order theoretical cor-
rections, such as initial state radiation and the finite W
width, and experimental effects like detection efficiency
and resolution will modify the observed distribution of
the phase space parameters φ. If they are taken into ac-
count in the determination of the coefficients in (4), (7)
and of the covariance matrix V (O) they will not lead to
any bias in the extraction of the couplings and their errors.
While this will presumably be done with sets of generated
events and might be computationally intensive one still
has to determine only a rather limited number of “sensi-
tivity” constants. We remark that the coefficients in the
denominator of (7) can be determined separately from the
others since they appear in the expression of the integrated
cross section (2). On the other hand one needs to know
the observables Oi(φ) of (13) as functions over the entire
experimental phase space, so that the expressions of S0
and S1,i used to construct them will in practice be taken
from a less sophisticated approximation to the actual dis-
tribution of φ in order to keep them manageable. The
observables are then no longer optimal, and it will depend
on the individual case which approximations of S0, S1,i
are good enough to obtain observables with a sensitivity
close to the optimal one.

2.1 Discrete symmetries

In [9] it was shown how with a suitable combination of
all semileptonic W−W+ decay channels one can define
observables that are either even or odd under the discrete
transformations CP and CPT̃ , where C denotes charge
conjugation, P the parity transformation, and T̃ the “na-
ive” time reversal operation which flips particle momenta
and spins but does not interchange initial and final state.
Under the conditions on the experimental setup and event
selection spelt out in [9] we have two important symmetry
properties:

1. A CP odd observable can only have a nonzero expecta-
tion value if CP symmetry is violated in the reaction.

2. If the expectation value of a CPT̃ odd observable is
nonzero the transition amplitude must have an ab-
sorptive part whose phase must satisfy certain require-
ments in order to give an interference with the nonab-
sorptive part of the amplitude.

We assume in this analysis that any nonstandard physics
in the reaction is due to the triple gauge vertices. In the
standard model one needs at least two loops to violate
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CP ; to a good accuracy the triple gauge couplings are
therefore the only possible source of CP violation. For
our process, i.e. e+e− annihilation into four fermions, an
absorptive part that satisfies the requirements mentioned
in point 2. will appear in the Standard Model already
at next-to-leading order in the electroweak fine structure
constant, either through nonresonant diagrams or through
loop corrections. To leading order, however, they are only
due to the imaginary parts of triple gauge couplings.

In this approximation the optimal observables (13) are
CP even (odd) if they correspond to CP conserving (vio-
lating) couplings, and CPT̃ even (odd) if they correspond
to the real (imaginary) parts of form factors. The coeffi-
cient matrix cij is then block diagonal in four symmetry
classes of observables and three-boson-couplings:

(a) : CP and CPT̃ even
(b) : CP even and CPT̃ odd
(c) : CP odd and CPT̃ even
(d) : CP and CPT̃ odd.

In the leading order analysis one thus can treat these
four classes of couplings separately and benefit from a
great reduction of unknown parameters. Beyond leading
order, however, form factors of any symmetry can con-
tribute to E[Oi]:

– in the integrated cross section and thus in the denom-
inator of E[Oi] − E0[Oi] in (4) couplings of all four
classes enter quadratically, couplings of class (a) also
appear linearly;

– if Oi belongs to class (a) the numerator of E[Oi] −
E0[Oi] has terms linear in the couplings of this class
but couplings of all four classes enter quadratically
through qijk ;

– if Oi belongs to a CP (CPT̃ ) odd coupling then the
numerator in (4) is only linear in CP (CPT̃ ) odd cou-
plings, but it contains also quadratic terms where a CP
(CPT̃ ) odd coupling is multiplied with a CP (CPT̃ )
even one.

We remark that this leads to different behaviours of E[Oi]
as one or more couplings gi become large: whereas for
observables in classes (b), (c) and (d) the expectation value
goes to zero when a coupling of the same class goes to plus
or minus infinity the corresponding limit of an observable
in class (a) can be a positive or negative constant or zero.

In a nonlinear analysis one will therefore in principle
have to consider couplings with all symmetries at the same
time. In practice one might choose simpler procedures if
the linear approximation is expected to be not too bad and
if one wants to calculate corrections to it. One might for
instance first analyse the four symmetry classes separately,
neglecting in each case the contributions of the three other
classes at the r.h.s. of (7) and then refine the analysis of
a class by taking the values obtained in the first step for
the couplings in the other classes as fixed in (7).

We emphasise that even beyond the leading order ap-
proximation it is still true that a nonzero mean value of
a CP or a CPT̃ odd observable is an unambiguous sign
of CP violation or the presence of absorptive parts in the

process, respectively. The extraction of the values of the
couplings, however, becomes more involved than in lead-
ing order.

3 Diagonalisation in the couplings

We shall now propose a method to analyse the data which
presents several advantages in view of the basic prob-
lem posed by the large number of unknown three-boson
couplings: with limited event statistics significant error
bounds can only be obtained for subsets of the coupling
parameters, but imposing constraints on the couplings to
reduce their number entails a loss of information that can-
not be retrieved. In view of this it should be advantageous
to use a parametrisation of the couplings which in a given
process and at a given c.m. energy has the following prop-
erties:

1. It allows to find observables which are only sensitive
to one particular coupling parameter.

2. The induced errors on the couplings determined from
these observables are statistically independent.

With this we can on the one hand give single errors for
each parameter, on the other hand we can recover from the
single errors the multidimensional error of the full set of
couplings, having avoided the loss of information incurred
by imposing constraints. From the single errors we can
also directly see which combinations of couplings in more
conventional parametrisations can be measured with good
accuracy and to which one is rather insensitive.

Let us remark that in the leading order analysis there
is a set of observables satisfying point 1. in any parametri-
sation of the couplings. The linear combinations

Ci =
∑
j

c−1
ij Oj (17)

of our optimal observables (13) are only sensitive to gi
for each i (cf. also [18]). The errors on the couplings de-
termined from these observables are, however, in general
not uncorrelated; in fact their correlations are the same as
those obtained with the original set Oi. This can be seen
as follows: going from the Oi to the Ci we must replace

cij → δij ,

V (O) → V (C) = c−1 · V (O) · (c−1)T , (18)

so that we have from (12)

V (g)−1
∣∣
O = N cT · V (O)−1 · c = N V (C)−1

= V (g)−1
∣∣
C . (19)

In such a case the single errors give an incomplete picture
of the situation if correlations are large. This is illustrated
in Fig. 1 (a), where the 1–σ ellipsis for two parameters is
shown. Their single errors are given by its projection on
the coordinate axes and in our example are both rather
large. Some linear combinations of them are however mea-
surable with much better precision, which one can only
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gj g′j

g′igi

(a) (b)

Fig. 1. Example of the 1–σ ellipsis for two extracted param-
eters in a parametrisation where their errors are correlated a
or uncorrelated b. The single errors on the couplings are given
by the projection of the ellipses on the coordinate axes

recognise if both errors and their correlations are given.
In Fig. 1 (b) where a set of couplings leading to uncor-
related errors is used the situation is much simpler. Note
also that the number of correlations, i.e. off-diagonals in
V (g), is yet modest for two couplings but increases rapidly
with their number.

We will now first see that a parametrisation of the cou-
plings satisfying both points 1. and 2. above can be found
in idealised circumstances, and then mention the restric-
tions one will encounter under more realistic assumptions.

If the statistical errors are small enough to permit an
analysis linearised around some couplings g̃i the solution
to our problem is easily found. For ease of notation we
present it taking the g̃i to be zero. Starting from the set
of couplings gi and the corresponding optimal observables
Oi in (13) we can go to another set g′i by

g′ = A−1g , (20)

where we use vector and matrix notation. The coefficients
in the expansion of the differential cross section and the
optimal observables transform as follows:

S′1 = ATS1

O′ = ATO . (21)

Let now Oi be an arbitrary set of observables related to gi
and define the corresponding O′

i related to g′i as in (21).
Then we have for the matrices relevant for our analysis
the following transformation properties:

c′ = AT · c ·A
V (O′) = AT · V (O) ·A

V (g′)−1 = AT · V (g)−1 ·A . (22)

As shown in [9] our optimal observables satisfy V (O) =
c and V (g)−1 = Nc so that for them one can choose a
transformation A which diagonalises all three matrices.
This new set g′ of parameters obviously has the properties
1. and 2. we were looking for.

Beyond the linear approximation of (4) the expecta-
tion value of O′

i will still receive contributions from several

couplings. In fact there is no set of observables for which
the full nonlinear expression in (4) satisfies point 1. ex-
actly, because the denominator involves quadratic terms
in all couplings, and this cannot be changed by any linear
transformation of the couplings. If on the other hand the
statistical errors are too large the covariance matrix V (g)
will not give a good picture of the errors as we discussed
in Sect. 2, and its diagonalisation will not ensure point
2. In the case however where nonlinear effects in the de-
termination of the couplings and their errors are not too
large, i.e. where the leading order expressions are a good
first approximation both points 1. and 2. above will still
be approximately satisfied in a full nonlinear analysis.

We emphasise that if one has some previous estimates
g̃i of the couplings that considerably deviate from zero
one may reduce nonlinear effects in the determination of
the gi by working with an expansion of dσ/dφ around the
g̃i as shown in Sect. 2; in our diagonalisation programme
one will then use couplings gi− g̃i instead of gi, the matrix
c̃ instead of c etc. Thus the usefulness of diagonalisation
is not restricted to the case that the actual couplings are
close to zero. It does, however, require the statistical errors
to be sufficiently small for the analysis to stay in a region
where linearisation about some values g̃i is possible.

To the extent that the observables (13) are constructed
from expressions of S0 and S1,j which are only approxi-
mations of those that determine the experimentally ob-
served kinematical distribution the matrices c, V (O) and
N−1V (g)−1 will not quite be the same and cannot be diag-
onalised at the same time. One can then diagonalise either
V (O) or V (g)−1 because they are by definition symmet-
ric and positive definite, whereas c is not necessarily so.
Again, unless such effects are large one will end up with
a matrix c′ that is not diagonal but has relatively small
off-diagonals.

It should also be borne in mind that the covariance
matrix V (g) only gives the statistical errors on the cou-
plings, so that even if it is exactly diagonal the final errors
may be correlated due to systematics.

3.1 Simultaneous diagonalisation of the correlation
matrix and the quadratic term
in the total cross section

The choice of transformation in (20) to (22) is not unique
if one does not require A to be orthogonal.1 We see in fact
no strong argument in favour of an orthogonal transforma-
tion and remark that the various parametrisations of the
WWγ and WWZ couplings in the literature are related
by non-orthogonal linear transformations. The freedom to
choose A can be used to impose additional conditions on
the transformation, and the one we propose here is that
the transformed quadratic coefficient

σ̂′2 = AT · σ̂2 ·A (23)

1 Orthogonal transformations have been used in the second
paper of [7]
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in the integrated cross section be the unit matrix. In terms
of the new couplings one then has

σ/σ0 = 1 +
8∑
i=1

σ̂′1,i g
′
i +

28∑
i=1

(g′i)
2

, (24)

where we choose the numbering such that g′1 to g′8 be-
long to symmetry class (a) introduced in Sect. 2.1, i.e.
they are the CP and CPT̃ even couplings. Only these ap-
pear linearly in the cross section, whereas all couplings
give a quadratic contribution with coefficient one. Hav-
ing σ̂′2,ij = δij leads to a convenient simplification of (4),
(7). Moreover, the measurement of the total cross section
gives complementary information on the unknown cou-
plings. Rewriting (24) as

σ/σ0 = 1−
8∑
i=1

(σ̂′1,i)
2

4
+

8∑
i=1

(
g′i +

σ̂′1,i
2

)2

+
28∑
i=9

(g′i)
2 (25)

we see that measuring a cross section σexp within an error
∆σ constrains the couplings to be in a shell between two
hyperspheres with centre at

g′i = −
σ̂′1,i
2

(i = 1, . . . , 8) ,

g′i = 0 (i = 9, . . . , 28) (26)

in the space of all couplings as shown in Fig. 2. Their radii
are given by

r2> =
σexp +∆σ − σmin

σ0
,

r2< =
σexp −∆σ − σmin

σ0
. (27)

Here

σmin = σ0

[
1−

8∑
i=1

(σ̂′1,i)
2

4

]
(28)

is the smallest value the cross section can attain; that such
a minimum exists has been pointed out in [19]. If in (27)
r2> is positive but r2< negative the couplings are inside the
hypersphere with radius r>, and if both r2> and r2< are
negative the ansatz (1) for the cross section is inconsistent
with the data within the error ∆σ.

Such constraints can be useful to find the physical set
of couplings when the solution of (7) from the measure-
ment of the optimal observables is not unique. If they are
strong enough they might even restrict the couplings to
the region where (7) can be linearised and thus simplify
their extraction. One can of course use the information
from the integrated cross section working with any set of
couplings, but again the situation is particularly simple
with the form (24).

We note that the information from the total rate is
complementary to what is extracted from the mean values
of our observables, which involve normalised kinematical
distributions. From an experimental point of view their

r<

g′j

g′i−σ̂′1,i/2

r>

Fig. 2. The measurement of the integrated cross section con-
strains the couplings to a shell between two hyperspheres with
radii r> and r< given by (27). g′i belongs to symmetry class
(a) introduced in Sect. 2.1 and g′j to class (b), (c) or (d). In the
example shown here the measurement is compatible with both
couplings being zero

respective measurements will presumably have quite dif-
ferent systematic errors. Let us also recall that the mea-
surement of the mean values Oi times the number N of
events obtained with a fixed integrated luminosity com-
bines the information of both [9]. A nonlinear data anal-
ysis as presented in Sect. 2 can also be done in this case.
We draw attention to the fact that unphysical solutions
of equation (7) for Oi and of its analogue for NOi will in
general not be the same. Also the expression of NOi is a
quadratic polynomial in the gi, so that Oi and NOi have
a different behaviour for large values of the couplings. We
shall however not elaborate on these points here.

Another aspect of the couplings with the property (24)
is the following. It is well known that constant coupling
parameters deviating from the standard model tree level
values lead to amplitudes that violate unitarity [20]. The
coefficients σ̂1,i and σ̂2,ij in the total cross section σ in-
crease strongly with the e+e− c.m. energy

√
s and the

couplings gi must vanish as s becomes large to ensure a
decent high-energy behaviour of σ. In our new parametri-
sation the quadratic coefficients in σ/σ0 are energy inde-
pendent, and in this sense the new couplings are at an
appropriate scale at every energy.

To complete this section we show that a transforma-
tion with the properties we require always exists, i.e. that
we can find a matrix A that diagonalises V (g)−1 in (22)
and transforms σ̂2 in (23) to the unit matrix. The argu-
ment is analogous if one replaces V (g)−1 with V (O). By
construction both V (g)−1 and σ̂2 are symmetric and posi-
tive definite, so our problem is the same as finding normal
coordinates for a multidimensional harmonic oscillator in
classical mechanics (cf. e.g. [11]). To make this analogy
transparent let us write T = σ̂2 and V = V (g)−1; we then
have to find A so that

AT · T ·A = 1 , AT · V ·A = D (29)
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with D being diagonal. The elements di of D are gener-
alised eigenvalues of V satisfying

V ai = di T ai , (30)

where ai is the i-th column vector of A. The solution is
well known to be

A = T −1/2 · U (31)

where U is the orthogonal matrix that transforms T −1/2 ·
V ·T −1/2 to D. Of course one need not use (31) in practice
as there are convenient algorithms available to find A and
D. In our numerical calculations we have used the routine
Eigenvals of the algebraic package MAPLE.

4 Numerical examples

We will now give some numerical examples of our method
described in the previous section. In this section we will
stay within the framework of a leading order analysis of
the observables. We start from the results in [9], where the
sensitivity of optimal observables for semileptonic WW -
decays was calculated. We assume a full kinematical re-
construction of the final state, except for the ambiguity
one is left with if the jet charge is not known. For the
standard model cross section we use the Born approxima-
tion and neglect effects of the finite W width. To describe
the triple boson couplings we take the form factors fγi , fZi
(i = 1 . . . 7) of [1]; deviations from their standard model
tree level values will be referred to as “anomalous cou-
plings”.

Let us first look at a c.m. energy of
√
s = 190 GeV,

which will be attained at LEP2. The coefficient matrix
c can be found in Table 4 of [9] and in Table 1 here we
give the diagonal elements of the transformed matrix c′,
ordered according to the symmetry of the corresponding
observables. In appendix B we display the matrix A−1

for the transformation (20) between the coupling param-
eters. The one standard deviation ellipsoid is diagonal in
the couplings g′i, thus its intersections with the coordinate
axes equal its projections on these axes. The errors δg′i set-
ting all other g′j to zero are then equal to the errors ∆g′i
where all other g′j are arbitrary. They are given by

∆g′i =
1√

V (g′)−1
ii

=
1√
Nc′ii

(32)

and are listed in Table 2 for an integrated luminosity of
500 pb−1.

We immediately remark that a negative diagonal ele-
ment occurs in the transformed coefficient matrix, which
is not allowed because c′ = V (O′) is a covariance matrix
and thus positive definite. We encounter here a problem
of numerical instability: small errors in the calculation of
the original matrices c and σ̂2 can have a large effect on
the smallest generalised eigenvalues c′ii and their eigenvec-
tors, even to the point that eigenvalues come out with the
wrong sign. This is not only a problem of our particular

Table 1. Diagonal elements c′ii of the transformed coefficient
matrix at

√
s = 190 GeV. They are ordered by the symmetry

classes (a) to (d) introduced in Sect. 2.1; the first row contains
c′1,1 to c′8,8, the second c′9,9 to c′16,16 etc. Note that the c′ii are
by construction positive; the negative value for c′16,16 is due
to numerical integration errors in the original matrix c. This
problem is further discussed in the text. A similar comment
applies to Tables 3, 4 and 6

(a) 1.5 1.4 0.83 0.70 0.32 0.10 0.027 0.019
(b) 1.1 1.0 0.81 0.68 0.028 0.0093 0.0056 −0.00045
(c) 0.80 0.67 0.28 0.028 0.013 0.012
(d) 1.4 1.2 0.85 0.13 0.039 0.017

Table 2. 1–σ errors ∆g′i on the extracted couplings corre-
sponding to the coefficients c′ii in Table 1. They are calculated
from (32) for an integrated luminosity of 500 pb−1

(a) 0.015 0.016 0.020 0.022 0.032 0.058 0.11 0.13
(b) 0.017 0.018 0.020 0.022 0.11 0.19 0.24 —
(c) 0.020 0.022 0.035 0.11 0.16 0.17
(d) 0.015 0.017 0.020 0.051 0.093 0.14

Table 3. Diagonal elements c′ii of the coefficient matrix re-
stricted to the left or right handed subspace of the couplings
as explained in the text. The values in the left handed subspace
differ from the corresponding ones in Table 1 by at most 3%

left handed right handed
(a) 1.5 1.4 0.83 0.69 0.35 0.12 0.030 0.019
(b) 1.1 1.0 0.81 0.68 0.030 0.23 0.11 −0.00042
(c) 0.80 0.67 0.28 0.030 0.018 0.012
(d) 1.4 1.2 0.85 0.13 0.042 0.018

way of diagonalisation, but also occurs if one diagonalises
c with an orthogonal matrix; we find that one of the usual
eigenvalues of c in the subspace of couplings with symme-
try (b) is negative. Such instabilities can cause large errors
in the matrix inversion of c and V (O). One needs V (O)−1

to calculate the error on the extracted couplings as can be
seen from (8) and (12), and large errors on c−1 can lead to
large uncertainties in the extracted couplings, irrespective
of whether c−1 is explicitly used to solve the system (7).
One will of course aim to calculate c and V (O) with best
possible precision, but such an effort has limits, in partic-
ular if they are determined from simulated events and in-
clude for instance radiative corrections or detector effects.
On a more fundamental level any calculation of these ma-
trices will only be an approximation of the “exact” ones
that correspond to the kinematical distributions seen in
experiment. In this sense it seems quite inevitable that
small eigenvalues (the usual or our generalised ones) of c
and V (O) and their eigenvectors are sensitive to impreci-
sions in the calculation and can lead to large errors or un-
certainties in the data analysis. This holds of course even
if one does not obtain eigenvalues with the wrong sign. We
think that also in view of this a diagonalisation is useful,
not because it solves the problem but because it makes it
explicit! It allows to easily identify those combinations of
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couplings which have small corresponding eigenvalues in
c and V (O) and will be the most unsafe ones in the anal-
ysis. From (32) we see that they are those combinations
for which the statistical errors will be largest. Here the
most unsafe coupling parameter is g′16. One might thus
choose to exclude it, and possibly other couplings, from
the analysis and work in the remaining subspace of the g′i
where the numerics is more stable and where in any case
the experiment is most sensitive. We will come back to
this in Sect. 5.

In Tables 1 and 2 we find that the range of sensitivities
is quite large, typically spanning several orders of magni-
tude in the c′ii. We can actually identify the role of those
form factors whose c′ii are small. To this end we pass from
the usual form factors fγi , fZi to the combinations which
appear in the amplitudes for e+e− →W+W− with left or
right handed electron polarisation, respectively:

fLi = 4 sin2 θW fγi + (2− 4 sin2 θW ) ξfZi ,

fRi = 4 sin2 θW fγi − 4 sin2 θW ξfZi , (33)

where ξ = s/(s − M2
Z) and θW is the weak mixing an-

gle. The matrix σ̂2 is block diagonal in the left and right
handed form factors because different electron polarisa-
tions do not interfere in the cross section, but the coef-
ficient matrix c is not. If one sets all right (left) handed
anomalous couplings to zero then one has to diagonalise c
in the left (right) handed subspace. Doing this we obtain
the results shown in Table 3. In each of the classes (a)
to (d) we find a clear correspondence of the generalised
eigenvalues in the left (right) handed subspace with the
largest (smallest) ones of the full matrix c given in Ta-
ble 1. The form factors g′i to which one is most sensitive
thus correspond predominantly to left handed combina-
tions, whereas the right handed combinations are more
difficult to measure. This confirms our findings in [9] and
can be explained by the missing neutrino exchange graph
for right handed electrons which can give a large inter-
ference with anomalous triple boson couplings. As a word
of caution we remark that the values given in Table 3
do not correspond to those for left or right handed elec-
tron beams, because for unpolarised beams both electron
helicities contribute to the standard model cross section
even if anomalous couplings corresponding to one helicity
are (assumed to be) zero. We found however in [9] that
the difference between c for a left handed electron beam
and the left handed submatrix of c for unpolarised beams
is small, again because the right handed standard model
contribution is small compared to the left handed one due
to the missing neutrino exchange graph.

Let us now come to the integrated cross section. We
first give it in the parametrisation by fγi and fZi , where the
standard model tree values are fγ1 = fZ1 = 1, fγ3 = fZ3 = 2
and zero for all other form factors:

σ/σ0 = 1

+ 0.022 (Refγ1 − 1) + 0.013 (RefZ1 − 1)− 0.031 Refγ2
− 0.010 RefZ2 − 0.074 (Refγ3 − 2)− 0.019 (RefZ3 − 2)
+ 0.0058 Refγ5

+ 0.0092 RefZ5 + {quadratic terms} (34)

We do not give the full matrix σ̂2 for the quadratic terms
here, but remark that the absolute values of its elements
are between 0.001 and 0.3 and its eigenvalues between
0.004 and 0.4. In our new parametrisation we have

σ/σ0 = 1 + 0.18 g′1 + 0.16 g′2 − 0.0052 g′3 − 0.052 g′4
− 0.15 g′5 + 0.071 g′6 − 0.029 g′7 + 0.0091 g′8

+
28∑
i=1

(g′i)
2

= 1− 0.023
+ (g′1 + 0.092)2 + (g′2 + 0.082)2 + (g′3 − 0.0026)2

+ (g′4 − 0.026)2 + (g′5 − 0.073)2 + (g′6 + 0.035)2

+ (g′7 − 0.014)2 + (g′8 + 0.0046)2 +
28∑
i=9

(g′i)
2 .(35)

Comparing with the first row of Table 1 we see that cou-
plings whose linear contribution to the cross section is
relatively small can give a relatively large linear contribu-
tion to their optimal observable and vice versa. A mea-
surement with an integrated luminosity of 500 pb−1 at√
s = 190 GeV that finds the cross section equal to its

standard model (Born level) value σ0 will have a relative
statistical error ∆σ/σexp = 1/

√
N = 0.018. According

to (27) this measurement would constrain the couplings
g′i to be between hyperspheres with radii r< = 0.066 and
r> = 0.202 in their 28-dimensional space. Comparing with
Table 2 we see that the thickness r> − r< = 0.136 of this
shell is of the same order of magnitude as the largest sta-
tistical errors to be achieved with our optimal observables,
which give the extensions of the 28-dimensional error ellip-
soid in a linearised analysis. This reflects the well-known
fact that the integrated cross section is clearly not as sen-
sitive to anomalous couplings as the detailed kinematical
distributions whose information we extract with our ob-
servables. It should however provide a useful cross check
and help selecting the physical solution of (7) in a full
nonlinear analysis. Moreover, even if the statistical errors
using optimal observables are smaller in principle they
might not be achievable in practice for couplings such as
g′16 that are associated with large numerical instabilities,
and in such cases the information from the total rate gives
a valuable constraint.

The origin of the instabilities we encountered in the
method of optimal observables is the large disparity of
the eigenvalues of c, which we have seen to be associated
with the large difference of their sensitivity to left and
right handed combinations of form factors. In contrast the
quadratic contribution to the integrated cross section is
the same for left and right handed form factors fLi , fRi ,
so that the range of eigenvalues is smaller for σ̂2 than
for c. As a consequence the numerical stability of σ̂2 is
better than that of c, which we have checked by performing
our diagonalisation (22), (23) with a fixed transformation
matrix A for slightly different initial matrices c and σ̂2.

Let us now apply our method to a typical LC energy√
s = 500 GeV with an integrated luminosity of 10 fb−1
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(cf. Tables 4 to 6). Here we encounter the particularity
that the coefficients of the form factors fγ,Z2 and fγ,Z7
in the scattering amplitude grow faster with energy than
those of the other couplings [1]. As a result the off-diagonal
matrix elements in c between fγ,Z2 and another coupling
are about a factor of 10 larger than matrix elements not
involving fγ,Z2 , and elements involving only fγ,Z2 are larger
by yet another factor of 10. The (usual) eigenvalues of c in
the CP conserving sector span 6 orders of magnitude. In
the CP violating sector the situation is less dramatic, but
still elements of c involving fγ,Z7 alone are about a factor
of 10 larger than the others. The same phenomenon is
found in the cross section, which reads

σ/σ0 = 1

+ 0.45 (Refγ1 − 1) + 0.23 (RefZ1 − 1)− 8.3 Refγ2
− 4.3 RefZ2 − 0.58 (Refγ3 − 2)− 0.31 (RefZ3 − 2)

+ 0.056 Refγ5 + 0.070 RefZ5
+ {quadratic terms} (36)

where σ̂2 has elements with absolute values between 0.04
and 1700 and eigenvalues between 0.02 and 1800. After
our simultaneous diagonalisation the range of the matrix
elements c′ii is significantly smaller as can be seen in Ta-
ble 4. The cross section now reads

σ/σ0 = 1− 0.31 g′1 + 0.057 g′2 + 0.0018 g′3 − 0.014 g′4
− 0.026 g′5 − 0.044 g′6 − 0.014 g′7 − 0.013 g′8

+
28∑
i=1

(g′i)
2

= 1− 0.026
+ (g′1 − 0.16)2 + (g′2 + 0.028)2 + (g′3 + 0.00091)2

+ (g′4 − 0.0068)2 + (g′5 − 0.013)2 + (g′6 − 0.022)2

+ (g′7 − 0.0069)2 + (g′8 − 0.0066)2 +
28∑
i=9

(g′i)
2 .

(37)

Of course, the g′i are now in general energy-dependent for
constant form factors fγ,Zi . As we mentioned in Sect. 3.1
the rapid growth with s of the coefficients of anomalous
parts of the couplings fγ,Zi in the amplitude has been “ab-
sorbed” into the coupling parameters by the transforma-
tion of σ̂2 to the unit matrix. As a result the linear co-
efficients in the cross section and the elements of the co-
efficient matrix c at

√
s = 500 GeV have the same order

of magnitude as at LEP2 energies, and the large differ-
ences in the s-dependence of the coefficients for different
couplings have been evened out.

A measurement at the LC that gives the standard
model cross section constrains the couplings to be be-
tween 28-dimensional hyperspheres with radii r< = 0.140
and r> = 0.182, taking the relative statistical error of
0.0067 on the cross section one would obtain with an in-
tegrated luminosity of 10 fb−1. The thickness of the shell,

Table 4. As Table 1, but for
√
s = 500 GeV

(a) 1.4 1.2 0.74 0.65 0.33 0.11 0.056 0.033
(b) 1.3 1.0 0.79 0.29 0.097 0.056 0.0092 −0.0013
(c) 1.2 0.58 0.32 0.066 0.027 0.013
(d) 1.4 1.0 0.83 0.22 0.033 0.025

Table 5. 1–σ errors ∆g′i on the extracted couplings, corre-
sponding to the coefficients c′ii in Table 4 for an integrated
luminosity of 10 fb−1

(a) 0.0056 0.0062 0.0078 0.0083 0.012 0.020 0.029 0.037
(b) 0.0060 0.0066 0.0075 0.013 0.022 0.028 0.070 —
(c) 0.0062 0.0088 0.012 0.026 0.041 0.059
(d) 0.0057 0.0067 0.0074 0.014 0.037 0.043

Table 6. As Table 3 but for
√
s = 500 GeV, to be compared

with Table 4

left handed right handed
(a) 1.4 1.1 0.72 0.63 0.50 0.17 0.062 0.044
(b) 1.3 1.0 0.79 0.26 0.11 0.083 0.023 −0.0012
(c) 1.2 0.58 0.32 0.076 0.031 0.013
(d) 1.4 1.0 0.83 0.24 0.040 0.026

r> − r< = 0.042, is again of the order of the largest sta-
tistical errors on the g′i one can obtain with optimal ob-
servables (cf. Table 5). Moreover such a small statistical
error is likely to be small compared with systematic er-
rors, so that the sensitivity of the integrated cross section
will even be less.

Finally we remark that like in the case for
√
s = 190

GeV those couplings g′i which give the largest statisti-
cal errors in the optimal observable analysis are predom-
inantly related to right handed combinations of form fac-
tors as can be seen from the comparison of Tables 4 and
6.

5 Simultaneous diagonalisation in practice

Let us sketch how our method of simultaneous diagonali-
sation might be used in practice.

1. One first has to choose which matrix to diagonalise
simultaneously with σ̂2. These matrices need not be
the same ones to be used in the data analysis itself
but may be calculated under further approximations.
Covariance matrices for the observables and extracted
couplings can be evaluated for zero gi as our entire
procedure will only have its desired properties if non-
linear effects are not too large. If one uses the same
approximation of the differential cross section (1) for
the construction of the optimal observables (13) and
the calculation of c, V (O) and N−1V (g)−1 then the
latter are all equal and can be diagonalised at the same
time. Otherwise one has to choose a positive definite
symmetric matrix for the diagonalisation, i.e. one of
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the covariance matrices. The calculation of V (g) or of
its inverse from (12) involves however a matrix inver-
sion and might suffer from numerical instabilities, so
presumably the best choice will be V (O).

2. In the next step one carries out the simultaneous diag-
onalisation of the chosen matrix and σ̂2 as described
in Sect. 3.1 and determines the transformation matrix
A in (20) to (22). At this point it will be useful to test
the numerical stability of the transformed matrices,
for instance by re-calculating them in the new basis
of couplings or by repeating the diagonalisation proce-
dure with slightly modified initial matrices. One might
choose to discard some of the new couplings g′i and the
corresponding observables from the analysis if the cor-
responding matrix elements are found to be instable.
This does not mean that one has to set these couplings
to zero. From the measurement of the total cross sec-
tion one will obtain limits on them, which will also
allow to control the contribution they can give to the
mean values of those observables that are kept in the
analysis because the matrix c′ is not exactly diagonal
and because of nonlinear terms in (7).

3. In the new parametrisation of the couplings one then
carries out the analysis of the data. Here V (O′), c′, σ̂′2
and the other coefficients in (4) will be determined un-
der the most realistic assumptions and with the best
precision one can afford. They will not be exactly di-
agonal in practice, but should have small off-diagonal
elements if the approximations made in step 1. and in
the construction of the optimal observables are suffi-
ciently good.

4. One can then give both single and multidimensional er-
rors on the measured coupling parameters g′i. At this
final stage results can also be presented in more con-
ventional and process independent parametrisations of
the couplings. Couplings g′i with large errors will then
correspond to badly constrained directions in parame-
ter space. Using the function χ2 of (8) one can also ob-
tain couplings and their errors in various subspaces as
explained in Sect. 2. Such subspaces may be motivated
by physical considerations or correspond to restricted
parameter sets used by other experiments one wants
to compare with.

6 Summary

In the first part of this paper we have discussed how to
extract coupling parameters from the measured mean val-
ues Oi of appropriate observables without the approxima-
tion that the couplings are small. A study of triple gauge
couplings with this method using generated events has
been performed in [14]. Errors on the couplings can be
obtained from a least squares fit of the Oi. If one puts
constraints on the couplings in order to reduce their num-
ber the method also gives an indication of how compati-
ble these constraints are with the data. The “optimal ob-
servables” discussed in [9] have statistical errors equal to
the smallest possible ones to leading order in the cou-
pling parameters gi. Beyond the leading order approxi-

mation one can obtain more sensitive observables if one
has some previous estimate g̃i for the couplings, expand-
ing the differential cross section around g̃i instead of zero
and constructing observables from the corresponding ex-
pansion coefficients. In appendix A we show that up to lin-
ear reparametrisations the choice of optimal observables
is unique: any other set of observables must give bigger
(statistical) errors. A consequence of this is that no set
of observables gives optimal errors for all actual values of
the coupling parameters.

In a second part we have proposed to perform the data
analysis using a particular parametrisation g′i of the cou-
plings, which is specific to the process and its c.m. energy.
It is obtained from the initial set gi by a linear transfor-
mation which diagonalises the covariance matrix V (O) of
the observables and transforms the matrix σ̂2 of quadratic
coefficients in the integrated cross section (2) to unity. In
an idealised framework each optimal observable O′

i for this
parametrisation is only sensitive to one coupling, and the
statistical errors on the extracted couplings are uncorre-
lated. Under realistic circumstances both properties can
be approximately satisfied provided that the analysis stays
in a region of parameter space where the dependence of
the mean values O′

i on the couplings is not far from linear.
Various matrices are then approximately diagonal which
should generally facilitate the data analysis. In particular
one can directly give errors on single or a small number of
couplings, which will be necessary to obtain statistically
significant results with a limited number of events. At the
same time one can readily present multidimensional errors
in parameter space, which is essential to compare with the
results of measurements that impose various different con-
straints on the couplings. Having approximately diagonal
matrices also allows to easily identify those directions in
parameter space which can be measured best and those
for which the statistical errors will be large and which are
likely to be associated with numerical instabilities, for ex-
ample in matrix inversions. One can thus recognise and
seek to remedy such problems in an early stage of the
analysis.

The measurement of the total cross section σ gives
valuable complementary information on the coupling pa-
rameters. Its dependence on the couplings is particularly
simple in the parametrisation we propose since the qua-
dratic contributions are (g′i)

2 times the standard model
cross section σ0, i.e. they have the same form for all cou-
plings. A measurement of σ will then restrict the g′i to a
shell between two hyperspheres in parameter space.

We have given some numerical examples of our method
applied to the semileptonic decay channels in e+e− →
W+W−. In particular we find that the couplings g′i which
can be measured best with unpolarised beams predomi-
nantly appear in the amplitude for left handed electrons
(or right handed positrons), and that the g′i with the
largest statistical errors mainly correspond to the oppo-
site lepton helicity. Comparing our results at LEP2 and
LC energies we see that the coefficients in the linear con-
tributions of the couplings g′i to our observables and to
the integrated cross section change much less with en-
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ergy than in usual parametrisations. This is because in
the new parametrisation the quadratic coefficients in the
normalised cross section σ/σ0 are by construction energy
independent.
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Appendix A:
Uniqueness of optimal observables

In this appendix we show that the set of observables (16),
obtained from expanding the differential cross section
about the actual values of the couplings, is unique in the
sense that up to the linear reparametrisations (39) it is
the only set of n integrated observables which in the limit
of large N leads to the minimum error on the n extracted
parameters.

To keep our notation simple we give the proof for the
case that the actual values of the gi are zero. The expec-
tation value and covariance of functions f(φ) and g(φ) are
then given by

E0[f ] =
∫
dφ f(φ)S0(φ)∫
dφS0(φ)

,

V0[f, g] = E0[fg]− E0[f ]E0[g] . (38)

In the general case one has instead of S0 the zeroth order
coefficient S̃0 (14) from the expansion about the appro-
priate values g̃i.

For large N the covariance matrix for the extracted
couplings is given by (12). Under a linear reparametrisa-
tion of observables,

Oi(φ) → O′
i(φ) =

∑
j

aijOj(φ) + bi , (39)

where aij and bi are constants and the matrix aij is non-
singular, the matrices c from (6) and V (O) transform ac-
cording to

c′ = a · c ,

V (O′) = a · V (O) · aT . (40)

From (12) we see that the covariance matrix V (g) is un-
changed under such a transformation. For our proof we

Table 7. Blocks of the matrix A−1 for
√
s = 190 GeV, corre-

sponding to symmetry classes (a) to (d). All matrix elements
are multiplied by a factor of 100

(a) Ref̄ γ
1 Ref̄Z1 Refγ2 RefZ2 Ref̄ γ

3 Ref̄Z3 Refγ5 RefZ5

g′1 4.7 6.0 −7.2 −9.3 −19 −23 −1.4 −4.8
g′2 3.0 3.5 −4.1 −4.9 −7.4 −11 5.9 9.6
g′3 2.2 2.1 −7.4 −10 −1.8 −0.66 −0.59 −0.57
g′4 −11 −15 6.4 7.0 5.8 3.2 0.93 0.12
g′5 −2.1 7.0 4.6 −11 13 −26 −2.8 2.4
g′6 2.1 −5.6 −4.9 7.8 −7.8 8.4 −5.9 6.6
g′7 7.8 −11 −7.5 11 −1.8 3.9 1.7 −2.8
g′8 7.0 −9.3 −0.29 0.57 −4.2 5.7 −0.94 1.3

(b) Imf̄ γ
1 Imf̄Z1 Imfγ2 ImfZ2 Imf̄ γ

3 Imf̄Z3 Imfγ5 ImfZ5

g′9 −0.67 −1.4 −3.5 −5.6 −14 −22 −1.1 −3.1
g′10 0.69 1.4 −2.2 −2.7 −4.5 −7.2 6.1 10
g′11 −8.8 −14 3.0 5.4 9.2 14 −0.34 1.0
g′12 −7.3 −12 10 16 7.3 12 −0.0021 1.6
g′13 11 −13 −8.4 9.8 −6.0 6.7 −0.70 0.83
g′14 1.6 −3.3 4.6 −5.2 0.27 1.6 1.7 −1.0
g′15 0.72 2.5 0.074 −3.8 −2.8 −2.5 −6.4 7.8
g′16 3.9 −5.3 −6.8 9.1 −18 23 0.45 −0.51

(c) Refγ4 RefZ4 Refγ6 RefZ6 Refγ7 RefZ7

g′17 8.3 14 6.1 13 −9.7 −14
g′18 −7.7 −12 −2.8 −10 −15 −27
g′19 4.4 5.6 −24 −41 −11 −19
g′20 −11 14 −9.3 8.0 3.4 −5.6
g′21 1.3 −3.8 −26 29 −18 20
g′22 −5.5 7.3 6.2 −8.4 −13 17

(d) Imfγ4 ImfZ4 Imfγ6 ImfZ6 Imfγ7 ImfZ7

g′23 3.9 7.6 −24 −39 −11 −18
g′24 −11 −18 −11 −13 −5.5 −5.9
g′25 −0.38 0.22 −1.1 −2.7 19 28
g′26 −8.4 12 −16 24 −2.6 3.9
g′27 8.7 −10 −20 24 −7.4 10
g′28 1.6 −3.2 4.6 −6.6 20 −27

can hence restrict ourselves to observables with mean value

E0[Oi] = 0 (41)

and with a coefficient matrix cij = δij . From (6) we then
have the condition

V0[Oi , S1,j/S0] = δij (42)

and the error on the extracted couplings is given by

V (g)ij = N−1V (O)ij = N−1V0[Oi,Oj ] . (43)

From [9] we know that the optimal observables (13)
lead to the smallest possible error on the gi, given by the
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Cramér-Rao bound. To satisfy our conditions (41) and
(42) we take the linear combinations

Di(φ) =
∑
j

(copt)−1
ij

(
S1,j(φ)/S0(φ)− E0[S1,j/S0]

)
(44)

with
(copt)ij = V0[S1,i/S0 , S1,j/S0] . (45)

We assume that the functions S1,i are linearly indepen-
dent. Otherwise some of the parameters gi are superfluous
and can be eliminated; our assumption is thus that the gi
are an independent set of parameters for the anomalous
couplings. Linear independence of the S1,i(φ) guarantees
that copt is nonsingular, which has tacitly been used at
several instances in our paper. The set Di is related to
the optimal observables S1,i/S0 by a linear transforma-
tion (39) and thus gives the same optimal error matrix
V (g).

The covariance V0[f, g] defines a scalar product on the
Hilbert space H of sufficiently smooth functions of φ with
the property E0[f ] = 0.2 The functionsDi span a subspace
HI of H, and we define HII as the orthogonal complement
of HI with respect to the scalar product V0[f, g]. Any set
of n observables satisfying (41) can then be written as

Oi = OI
i +OII

i (46)

with OI
i ∈ HI , OII

i ∈ HII . Further decomposing OI
i =∑

j aijDj and using the constraint (42) we obtain aij =
δij , i.e.

OI
i = Di . (47)

Finally, we have from (43), (46), (47)

V (g)ij = N−1V0[Di,Dj ] +N−1V0[OII
i ,OII

j ] . (48)

The first term gives the error on the couplings for the op-
timal observables Di, which is minimal. If the observables
Oi have minimal error, too, the second term must be zero,
so that for each i we have V0[OII

i ,OII
i ] = 0 and thus

OII
i = 0 , (49)

which completes our proof.
In Sect. 3.1 we mentioned that instead of Oi one may

use the product NOi measured with fixed luminosity to
extract the couplings [9]. By an argument analogous to the
one of this appendix one finds that up to linear reparame-
trisations our observables (16) are again the only optimal
ones. In this case linear reparametrisations have to be ho-
mogeneous, i.e. one must have bi = 0 in (39), since adding
constants to the observables can change the induced errors
on the coupling parameters.

Appendix B:
Transformation matrices at

√
s = 190 GeV

In Table 7 we give the matrix A−1 for the transformation
(20) to our g′i at

√
s = 190 GeV, where the initial parame-

ters gi are the real and imaginary parts of the form factors
2 A similar scalar product has also been used in [4]

fγi , fZi minus their standard model tree level values. For
brevity we write f̄γ1 = fγ1 − 1, f̄Z1 = fZ1 − 1, f̄γ3 = fγ3 − 2,
f̄Z3 = fZ3 − 2. The matrix A−1 is block diagonal in the
symmetry classes (a) to (d) introduced in Sect. 2.1. For
convenience the matrix elements are multiplied by a factor
of 100 in the table.

From these matrices and the errors ∆g′i in Table 2
on can read off to which combinations of the fγi , fZi the
experiment is most and to which it is least sensitive. Cor-
responding matrices for other parametrisations of the cou-
plings, e.g. those of [3], can easily be obtained by further
transformation from the fγi , fZi to these parameter sets.
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